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The ability to follow individual fluid particles dispersing in a turbulent 
flow and to collect turbulence information along their trajectories is of 
key importance in many problems of practical and theoretical 
significance. With the availability of a direct numerical simulation of 
turbulence such information can be extracted directly from first prin- 
ciples without resorting to questionable assumptions. In this paper an 
algorithm for tracking fluid particles in a direct numerical simulation of 
turbulent channel flow is developed and tested. Fluid particle velocities 
are computed with an interpolation scheme that employs Lagrange 
polynomials of order 6 in the homogeneous directions of the channel 
and Chebyshev polynomials in the inhomogeneous normal direction. 
Errors in computed particle velocities and trajectories are assessed and 
it is shown that accurate single-particle Lagrangian statistics can be 
extracted both in the center and in the wall region of the channel. 
(c? 1992 Academic Press. Inc 

1. INTRODUCTION 

Analyses of turbulent transport are usually formulated 
with averaged conservation equations. These suffer from the 
well known closure problem in that unknown terms, intro- 
duced in the conservation equation by the averaging, have 
to be assumed or estimated in order to generate a closed 
system of equations. 

An alternate approach, in which the physics emerges in a 
more natural way, has been available, since the pioneering 
work of Taylor [ 133 on “diffusion by continuous 
movements.” Taylor described the dispersion process as the 
result of the random wandering of fluid particles in a 
turbulent field. Progress in using this formulation has been 
hindered because of the difficulties of studying Lagrangian 
characteristics of turbulence in the laboratory. However, 
with the availability of direct numerical simulations (DNS) 
of turbulent flows which provide instantaneous realizations 

of turbulent fields, tracing fluid particles, and extracting 
Lagrangian turbulence statistics becomes straightforward. 

Deardorff and Peskin, as early as 1970, reported single- 
and two-particle Lagrangian statistics from a large eddy 
simulation (LES) of turbulent channel flow. Riley and 
Patterson [12] simulated particle diffusion in decaying 
isotropic turbulence. Yeung and Pope [ 171 (abbreviated to 
YP from now on), as well as Balachandar and Maxey [ 1) 
(BM), have also presented computed Lagrangian statistics 
extracted from a DNS of isotropic turbulence. Bernard et al. 

[2] used ensembles of particle paths to investigate the 
origin of Reynolds stress in a DNS of turbulent channel 
flow. McLaughlin [8] employed a numerical simulation of 
turbulent channel flow to investigate the dispersion and 
deposition of aerosol particles. 

In numerical tracking experiments the instantaneous 
position of a particle does not, in general, coincide with a 
mesh point. A critical aspect of the calculation is, therefore, 
the evaluation of fluid particle velocities, by interpolating 
the known values of the Eulerian velocity fields at the mesh 
points. Research by (YP) and (BM) has thoroughly 
examined this problem for a homogeneous isotropic tur- 
bulence. The present paper explores the accuracy of various 
interpolation schemes for the case of a channel flow and 
makes recommendations for carrying out accurate and 
economical calculations. 

Turbulent flow in a channel has a number of aspects 
which deserve special consideration: Considerable energy 
resides in smaller scales of motion, which are hard to 
interpolate accurately. Another difficulty stems from the 
presence of the wall which does not allow the application of 
periodicity of the velocity field in the direction normal to the 
channel walls. As a result, polynomial interpolation of high 
order, say n th, cannot be applied for particles which are 
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within n/2 - 1 grid points away from the wall. This problem 
cannot be solved by reducing the order of interpolation 
close to the wall because accuracy would be sacrificed in a 
region where it is most needed. The high order of interpola- 
tion could be maintained by employing the necessary num- 
ber of grid points, starting with the grid point at the wall. 
This approach would leave the fluid particle closer to one 
end of the interpolated interval. It is known, however, that 
high order polynomial interpolation may exhibit strong 
oscillations at the ends of the interval despite its accuracy in 
the middle. 

In this paper the pseudospectral code of Lyons [S, 63 is 
used to simulate fully developed turbulent channel flow at a 
low Reynolds number. A large number of fluid particles are 
tagged simultaneously and their trajectories are traced by 
integrating the equation of particle motion. The most 
promising of the interpolation techniques proposed by (YP) 
and (BM) for isotropic turbulence are compared and 
evaluated for the case of turbulent channel flow. A new 
mixed polynomial-spectral interpolation, best suited to the 
spectral method used in the hydrodynamic simulation, is 
also implemented and tested. Estimates of interpolation 
errors at different distances from the channel walls are 
given. It is demonstrated that, with adequate spatial 
resolution in the flow simulation, accurate estimates of 
Lagrangian statistics in channel flow can be extracted at 
only a fraction of the cost expended on the hydrodynamic 
simulation of the flow. Appropriate simulation procedures 
are also discussed and some single particle statistics are 
reported. However, a major contribution of the paper is that 
it offers the opportunity of going beyond the calculation of 
particle trajectories from discrete data. Because a DNS is 
used, information about the fluid field seen by the particle is 
obtained which has not been available from laboratory 
experiments. This greatly expands theoretical opportunities 
in using Lagrangian methods to analyze turbulent fields. 

2. DIRECT NUMERICAL SIMULATION OF 
FULLYDEVELOPEDTURBULENT 

CHANNEL FLOW 

In order to calculate individual realizations of fluid 
particle paths, detailed instantaneous information about the 
flow is required. With a DNS, the evolution of the fluc- 
tuating Eulerian velocity field at a large number of spatial 
locations is determined by solving the full three-dimensional 
time-dependent Navier-Stokes equations. The DNS of 
Lyons [6] for a turbulent channel flow used about 1 x lo6 
(128 x 65 x 128 in x, y, z) mesh points. His code is employed 
in this work to supply instantaneous Eulerian velocity 
values. The description of the algorithm offered below is 
brief and pays attention only to aspects relevant to this 
work; a more detailed exposition can be found in a thesis by 

Lyons [S] and in a recent paper by Lyons, McLaughlin, 
and Hanratty [6]. 

A statistically stationary and fully developed turbulent 
flow in a two-dimensional channel is considered. The flow 
geometry and the coordinate system used in the simulation 
are shown in Fig. 1. An incompressible, Newtonian fluid is 
confined between two smooth parallel plates separated by a 
distance 2H. The plates are assumed infinitely long and wide 
and they are at rest with respect to the coordinate system. 
The flow is driven by a constant mean pressure gradient. 
The x-axis is parallel to the mean flow, the y-axis is per- 
pendicular to the channel walls, and the z-axis points in the 
spanwise direction. All average hydrodynamic quantities 
are independent of the z coordinate because of the unboun- 
dedness of the flow in the z-direction. They are also inde- 
pendent of x, because there is no streamwise acceleration. 
The profile of the average shear stress is linear with distance 
from the wall and symmetric about the centerline. The 
computed variation of average hydrodynamic quantities 
with distance from the wall can be found in [S, 61. 

The velocity field is subject to periodic boundary condi- 
tions in the streamwise and spanwise directions with 
periodicity lengths E,, and A,, respectively, which determine 
also the size of the computational domain in these direc- 
tions. No-slip conditions are applied at the rigid channel 
walls. The Navier-Stokes equations are integrated in time 
using the pseudospectral fractional step method originally 
developed by Orszag and Kells [ 111 and the added correc- 
tion suggested by Marcus [7] to ensure that the proper 
boundary condition on the pressure field exists at the 
channel walls. The pseudospectral methods used to solve 
the Navier-Stokes equations are described in detail by 
McLaughlin [8]. All variables and most of the results are 
made dimensionless with wall parameters, the kinematic 
viscosity, v, and the friction velocity, U* = Jk%, where 
z, is the wall shear stress. Characteristic wall length, time, 
and pressure scales are then constructed as L* = v/u*, 
T* = v/w2, P* = pm2. 

The velocity field is represented as a truncated series of 
the form 

N-l2 ~ I N./2- 1 N., 

U(x, y, z, t) = -‘I “x 2 tJ(l, n, m, t) 
I=-N,/2 m=-NN,,2 n=O 

x 3zi((k/&) + (md&))T 
0 
2 

“H’ (1) 

I // 2, ‘, 
xx 

FIG. 1. Flow geometry and coordinate system used in the simulation. 
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where N,, N, + 1, NZ are the number of grid points in the 
x, y, z directions, respectively. The n th order Chebyshev 
polynomial is defined by 

T, ; = cos(nO), 
0 

where 

tl=cos-’ 5 0 

The use of Fourier series in the spanwise and streamwise 
directions satisfies the periodicity requirements in these 
directions automatically. The choice of a Chebyshev expan- 
sion in the direction normal to the channel walls avoids the 
Gibbs phenomenon and naturally increases the spatial 
resolution of the computation in the high shear region close 
to the walls where steep gradients are expected. The convec- 
tive (or nonlinear) terms of the Navier-Stokes equations are 
evaluated in physical space. The aliasing errors thus 
incurred in the x- and z-directions are removed by trunca- 
tion according to the “two-thirds” rule (Orszag [lo]). Due 
to the explicit treatment of the nonlinear term, the Courant 
constraint on the largest time step size permissible, At, must 
be observed at all grid points in order to ensure numerical 
stability. 

The main input parameters for the flow simulation are the 
computational box dimensions, the number of grid points in 
each direction, and the size of the time step. An initial 
velocity field is also required to start the computations. 
Results from three simulations, using boxes of different sizes 
and different grids, will be presented in this work. Some 
preliminary exploratory results were obtained in a small 
box of 1, = 630, 2H = 250, and 1; = 630, overlayed by a 
coarse grid consisting of 16 x 33 x 64 or 16 x 65 x 64 (in x, y, 
z directions, respectively) grid points. These grids (or 
simulations) are referred to as grid (or simulation) A and B, 
respectively. More accurate results were obtained by using 
a much finer grid (grid C) of 128 x 65 x 128 mesh points and 
a larger computational box of 1900 x 300 x 950. The size of 
the time step was 0.20 for the coarse grid runs and 0.25 for 
the high resolution runs. Lyons [ 5,6 J determined that these 
time step values are small enough for an accurate simulation 
of the Eulerian flow. The Reynolds number, based on the 
bulk velocity and twice the channel height, was 9048 for 
simulation C. The channel code has been validated by com- 
parisons with the experimental data of Niederschulte [9] 
(Lyons [ 5, 61). Statistical and structural information 
extracted from the computed flow fields are in good agree- 
ment with existing experimental results, even for the low 
resolution simulation A (Lyons [S, 61). 

3. FLUID PARTICLE TRACKING 
ALGORITHM 

(a) Equation of Motion 

The method for calculating the trajectory of a fluid par- 
ticle is based on a numerical integration of the equation of 
particle motion. The position that the particle is initially 
assigned provides the initial condition for the integration. 
A record of the random particle velocities and positions 
at selected sampling times is stored for statistical post- 
processing. Let X(x,, t) and V(x,, t) denote the position 
and velocity at time t of the fluid particle originating at x0 
at time t = 0. The equation of motion of the particle is 

ax(xo, t) 
at = Vb,, t), 

subject to the initial condition at 

t = 0: X(x,, t) = x(). (5) 

The Lagrangian particle velocity V(x,, t) is related to the 
Eulerian velocity U by 

V(%, t) = ut-X(x,, t), tl. (6) 

According to Eq. (6) the instantaneous particle velocity is 
the same as the fluid velocity at the instantaneous particle 
position. From the DNS, the Eulerian velocity is available 
at each time step on a three-dimensional grid. Since the 
instantaneous position of a particle does not, in general, 
coincide with a grid point, the particle velocity has to be 
evaluated by a three-dimensional interpolation of the 
Eulerian velocity grid point data. Accurate interpolation is 
required, since the Eulerian velocity fields vary sharply in 
space, and numerical errors in the calculated particle trajec- 
tory can grow rapidly with time. The continuous spectral 
series representation of the velocity field (1) does provide a 
convenient and accurate (up to the accuracy available from 
the flow simulation) way to calculate the velocity at any 
location within the flow domain. Unfortunately, the com- 
putational cost of a direct summation of the series in (1) is 
unacceptably high and makes this technique prohibitively 
expensive, except for the case of a small number of particles. 

(b) Evaluation of Fluid Particle Velocities 

Interpolation methods are usually based on the construc- 
tion of an approximating function that reproduces the 
available discrete set of data exactly. Then approximate 
interpolated values can be obtained for arbitrary inter- 
mediate values of the independent variables. When the func- 
tion underlying the data is of unknown form, polynomials 
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are usually chosen. The error of the approximation when a 
polynomial of degree (n - 1) is used decreases asymptoti- 
cally as O(h”) as the spacing between the grid points, h, goes 
to zero. The approximation is therefore of order n. YP and 
BM have recently shown that the accuracy of three-dimen- 
sional linear interpolation, which has been the method of 
choice for some time (Deardorff and Peskin [4], Riley and 
Patterson [ 121, Bernard et al. [2]) because of its simplicity 
and its low computational cost, is rather poor when applied 
to turbulent velocity fields. They investigated various alter- 
native interpolation methods for the case of homogeneous 
turbulence. It is shown by YP that cubic spline interpolation 
compares favorably with other interpolation schemes con- 
sidered in their work. BM recommend the use of sixth-order 
Lagrange interpolating polynomials. Following the recom- 
mendations of YP and BM both cubic spline interpolation 
(CSI) and Lagrangian interpolation (LGI) were considered 
in the present study. Linear interpolation (LNI) was also 
tried for comparison purposes. The implementation of these 
interpolation techniques is discussed by YP and BM and 
will not be reproduced here. 

In a channel flow, turbulence is affected by the presence 
of walls which generate high shear and small scales of 
motion in their vicinity. The spatial resolution of the com- 
putation of the Eulerian hydrodynamics fields is enhanced 
in the region close to the walls of the channel by the natural 
grid stretching associated with the use of Chebyshev poly- 
nomials. However, the resolution deteriorates with distance 
from the wall and becomes worst in the center of the chan- 
nel. It is not obvious that the Lagrange or cubic spline inter- 
polation scheme, recommended by BM and YP, would be 
as satisfactory in the nonhomogeneous normal direction of 
channel flow as in the homogeneous directions. Conse- 
quently, a more accurate interpolation method, based on 
the direct summation of the Chebyshev series used in the 
representation (1) of the Eulerian velocity fields, was also 
explored for interpolation in the normal direction. 

If the summations over the indices I and m are carried out 
in Eq. (1) the velocity at any point (x, z) on the plane 
defined by a given value of y can be expressed as 

U(x, y, z, t) = 2 n*(x, n, z, t) T,, (7) 
n=O 

The Chebyshev coefficients in Eq. (7) become available 
during the course of the flow simulation. First the summa- 
tion in (7) is carried out for a y value corresponding to the 
normal position of each particle (y = X,) and (x, z) values 
corresponding to the 36 grid points surrounding the 
particle. Then a two-dimensional interpolation is performed 
over the plane y = X,, using Lagrange polynomials of 
degree live. This mixed Lagrangian-Chebyshev interpola- 
tion scheme is denoted as LGCH. 

Other hybrid spectral-polynomial schemes can be 
obtained by using other types of polynomials (in place of 
the Lagrange polynomials) in order to perform the 
two-dimensional interpolation in the plane y = X,. A mixed 
Hermite-Chebyshev scheme, which is denoted as HMCH, 
was also tried. 

(b) Time-Stepping 

The work of YP has demonstrated that an explicit 
second-order Runge-Kutta time advancement scheme is 
sufficient for the integration of the equation of particle 
motion (2). In any case the time-stepping error can be easily 
controlled by keeping the tracking time step Att, small. In 
this study an Adams-Bashforth scheme (also explicit and 
second-order accurate) is applied: 

+ C$Vi(Xo, tn)-~V/i(Xo, tn--1)1 .Attr. (8) 

A well-known difficulty with multistep schemes like the 
Adams-Bashforth method is that they are not self-starting 
since, in order to extrapolate to the next point, they require 
information from previous points (e.g., from time step 
(n - 1) in the above formula (9)). A second-order accurate 
Runge-Kutta method (known as the improved Euler’s 
method or Heun’s method (Carnahan et al. [3]) is 
employed to start the integration. According to this 
algorithm a first-order Euler’s method is employed twice in 
sequence: 

X*(X0, tn+l)=Xj(Xoy t,)+ Vi(Xo, t,)‘At,, (9) 

xj(x05 tn+ 1) = xi(x03 ta) 

+ ~Cvi(xO, t,)+ V:(xo, t,+l)l .Attr. 

(10) 

This scheme may be viewed as the simplest of the so-called 
predictor-corrector methods. Starting at the current time 
instant t,, the predictor step (i.e., Eq. (9)) yields a 
preliminary estimate XT of the ith component of the par- 
ticle position vector at the next sampling time instant t, + , 
For this estimation, the current value of the particle velocity 
is used. This value is given by the Eulerian velocity at the 
current time and current particle position: 

vj(xO, tn)= uiCx(xO, tn)3 tnl. (11) 

In the corrector step an improved estimate Xi(xo, t, + i) is 
obtained from Eq. (10); the particle velocity used in this 
estimation is the weighted average of approximations at the 
ends of the time interval [tn, t,+ i], where 

VI (x 02 tn+l)=~iCx*(XO, fn+l)9 tn+ll. (12) 
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The Runge-Kutta time stepping scheme (9), (10) requires 
two interpolated velocity values for each particle and 
each velocity component at each time step. The Adams- 
Bashforth scheme requires only one, so the time-stepping is 
continued with (8). 

4. TESTS IN PRESCRIBED 
VELOCITY FIELDS 

(a) Estimation of Velocity Interpolation Errors 

The interpolation error in obtaining particle velocities is, 
by far, the most serious of all the errors incurred in calcu- 
lating particle paths and depends on the nature of the 
velocity field being interpolated, the spatial resolution, and 
the accuracy of the interpolation scheme. The performance 
of the interpolation schemes of interest is assessed by com- 
paring the error incurred by each scheme in interpolating a 
prescribed velocity field which bears some qualitative 
resemblance to a typical turbulent field. With a prescribed 
field the exact value of the velocity everywhere in the com- 
putational domain is known analytically and the interpola- 
tion error averaged over a network of prescribed locations 
within the domain can be easily calculated. Following BM, 
a single sinusoidal mode of the following form is used as a 
sample velocity field: 

U(x, y, z) = sin(k, .x + k, . y + k, .z). (13) 

As a simplification, only modes satisfying the condition 
k, = k, = k, = k are examined. The computational domain 
for the test was taken to be a cubic box of side L overlayed 
with a grid of N+ 1 points in each direction that has a 
uniform spacing h = L/N. 

The accuracy of the CSI and LGI schemes for individual 
Fourier modes of different wavenumbers is compared. The 
wavenumber k = (k, , k2, k,) = k, k, k) takes values which 
are integer multiples of a fundamental wavenumber 
(a, a, a), with a = 27x/L: 

k = n( 2x/L), (14) 

where n = -N/2, . . . . 0, . . . . (N/2- I). For n =0 (i.e., a 
uniform velocity field, U = 0) all interpolation schemes 
(linear interpolation included) become exact. As BM 
observe, low wavenumber components (i.e., large scales) are 
interpolated more accurately than high wavenumbers. The 
accuracy with which a real turbulent field is interpolated 
depends on the energy distribution among the several 
wavenumber components of the velocity. It should be 
recalled, at this point, that because of the dealiasing 
procedure in the homogeneous directions of the flow, only 
modes up to 2/3(N/2 + l), where N is the number of grid 

points in the corresponding direction, are retained in the 
flow simulation. 

The velocity field at the grid points is computed analyti- 
cally from the prescribed expression (13). A large number of 
fluid particles, N,, , are allocated in the computational 
domain and exact values of the velocity at the particle 
locations, VP,,, i, are also computed analytically from (13). 
Approximate velocity values at the particle locations, Vpr,r, 
are computed with the spline or Lagrangian interpolation of 
the velocity at the grid points. These are compared to the 
exact values in order to evaluate absolute local interpola- 
tion errors: 

ej= I Vpr,i - Vprx,ilr i = 1, . . . . N,,. (15) 

As a measure of the overall interpolation error the root 
mean square value of ej over all particles, erms, is computed. 
(This measure is similar to the one proposed by BM, except 
that only wavenumbers with equal components are taken 
into account. A numerical evaluation of this measure of 
error presents no difficulties even for three-dimensional 
lields. This was not the case with the analytical evaluation 
attempted by BM.) 

In Fig. 2 the interpolation error, erms, is plotted versus the 
resolution, R, for several interpolation schemes, where 

R = [scale of motion] I 271 N z-c--- 
[grid spacing] h IkJ L’ (16) 

and Ikl = JkT + k: + k: is the magnitude of the wavevector 
tested. Values of N = 64, L = 271 and N,, = 500 were used for 
the calculations. For high values of R the interpolation 
errors decrease at rates consistent with the orders of 
accuracy of each scheme. Linear interpolation is clearly the 
least accurate of the methods for all values of R. Cubic 
spline interpolation is superior to Lagrangian interpolation 

loo 
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FIG. 2. Interpolation error versus resolution for interpolation of 
sinusoidal velocity fields using different interpolation schemes: linear 
(LNI), Lagrangian interpolation of degree 3 (LGI/3), Lagrangian inter- 
polation of degree 5 (LGI/S) and cubic spline interpolation (CSI). 
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of the same order. For low values of R the CSI scheme is 
slightly more accurate than LGI of degree live [LGI/S). 
However, since LGI/S is more accurate than CSI at large R, 
it is adopted in this work. 

(b) Time-Stepping Errors 

The time-stepping error due to the finite size of the time 
step d tt, is generally much less than the interpolation error, 
especially for coarser grids and less accurate interpolation 
schemes. The order of accuracy of the scheme by which the 
integration of the equation of particle motion is accom- 
plished and the temporal resolution, At,,, determine the 
magnitude of the error incurred at each time step. This error 
is accumulated over time and the cumulative time-stepping 
error depends also on the duration of tracking (T,,). 

A test of the particle tracking algorithm can be performed 
with a prescribed turbulence-like flow for which particle 
paths are known analytically. Such a simple test case is 
provided by a velocity field of the form: 

U(x, y, z t) = uo 
u(x, y, z; t) = 0 

w(x, y, z; t) = A . sin(k, . x). 

(17a) 

(17b) 

(17c) 

This velocity field is periodic, frozen in time, and inde- 
pendent of y. Particles in this flow move sinusoidally in the 
horizontal plane x-z, and are uniformly translated in the 
x-direction. The trajectory of a particle can be derived by an 
analytic integration of the equation of particle motion 
(dX/dt = U,,, dY/dt = 0, dZ/dt = A . sin(k, ’ x)). The solution 
for the coordinates of a particle at time t, which was placed 
initially at point (X0, Y,, Z,), is given as 

X(t)=X,+ U0.t (18a) 

Y(t) = Y, (18b) 

(18~) 

Errors in calculated particle displacements can be quan- 
tified by comparing with (18). 

The results of such comparisons for different wave num- 
bers k,, using Lagrange interpolating polynomials of dif- 
ferent degrees and two different time differencing schemes 
and step sizes are shown in Figs. 3,4, and 5. The parameters 
of the prescribed flow field are chosen as U. = 5 and A = 1 
and the particle is initially placed at point (X0, Y,, Z,) = 
(315,0, 315). The computational box dimensions 
(630 x 250 x 630) and the grid (16 x 33 x 64) are the same as 
those for simulation A discussed in Section 2. Two values of 

the wavenumber k, = n . a are examined: n = 3 and n = 6, 
where a = 2n/L = 6.281630 = 0.0099733 is the fundamental 
wavenumber component in the x-direction. Had a real tur- 
bulent field existed in the same domain, no spectral modes 
(in the x-direction) higher than n = 6 would have survived 
the dealiasing procedure used in the flow simulation. The 
wavenumber corresponding to n = 3 is expected to carry a 
significant amount of energy and it must be interpolated 
accurately. Some inaccuracy can be tolerated in the inter- 
polation of the smaller scales of motion (such as those 
represented by n = 6) since they normally possess insignifi- 
cant amounts of energy and make a negligible contribution 
(confined to small diffusion times) to the turbulent diffusion 
process which is dominated by the large scales of motion. 

In Fig. 3 the trajectory of a particle in a velocity field 
corresponding to n = 3 is computed numerically and 
compared to the exact trajectory predicted analytically. 
Different interpolation schemes (linear, Lagrangian of order 
four and six) are applied and a first-order accurate Euler 
scheme is used for time differencing. The tracking time 
(T,, = 42 time units) is long enough for the particle to cover 
a distance equal to one wavelength (A = 2x/k = 210 length 
units). A tracking time step (dtt, = 0.5) much smaller than 
this natural time scale is chosen in order to resolve the 
velocity variations. It is clear from Fig. 3(a) that the linear 

320 I ’ I 
(a) LNI 

z 310 

300’ ’ L ’ ’ ’ 
300 400 ” 500 600 

A 
320 I / 1 

b) LGV3 / 

z 3lO~\com,puted~ ] 

300’ ’ ’ ’ j ’ 
300 400 

X 
500 600 

320 I 1 1 
(c) LGl/5 

300’ ’ ’ ’ 
300 400 X 

500 600 

FIG. 3. Particle displacement errors in a prescribed velocity field (of 
the form (14), (15), (16)) for different interpolation schemes: (a) linear 
interpolation; (b) Lagrangian interpolation of degree 3; and (c) 
Lagrangian interpolation of degree 5 (n = 3, Art, = 0.5, Euler time-stepping 
scheme). 
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FIG. 4. Particle displacement errors in a prescribed velocity tield (of 
the form ( 14), (1 S), (I 6)) using different time-stepping schemes: (a) Euler 
and (b) Adams-Bashforth (n = 3, Lagrange interpolation of order 6, 
AI,, = 1 ). 

interpolation scheme fails to follow the sinusoidal variation 
of the particle trajectory while Lagrange polynomials of 
order six reproduce the analytic solution almost exactly 
(Fig. 3c.) Lagrange polynomials of order four achieve quite 
satisfactory levels of accuracy (Fig. 3b). 

The effect of time-stepping errors is examined in Fig. 4. 
Doubling the size of the time step to Act, = 1 for the case 
where interpolation errors are negligible (i.e., sixth-order 
interpolation) has only an insignificant (although detec- 
table) effect on the accuracy of the computed trajectory 
Fig. 4a as compared to Fig. 3(c). Increasing the accuracy of 
the time-differencing scheme to second-order eliminates any 
time-differencing errors even for the lower temporal resolu- 
tion case (At,, = 1) as it is evident from Fig. 4b. 

312' I I 
300 400 500 600 

X 

FIG. 5. Effect of low resolution on particle displacement errors in a 
prescribed velocity field (of the form (14), (15), (16), n = 6, Lagrange inter- 
polation of order 6, At,, = 0.5, Euler time-stepping scheme). 

The effect of a deterioration in the spatial resolution is 
much more serious than time-stepping errors. Even a sixth- 
order interpolation scheme achieves only marginal accuracy 
in computing the trajectory of a particle in a rapidly varying 
small scale velocity field corresponding to n = 6 (Fig. 5). 
Fortunately, such small scales are expected to play only a 
secondary role in the dispersion process. 

5. TEST IN SIMULATED TURBULENT 
CHANNEL FLOW 

(a) Testing Procedure 

This section discusses results on the diffusion of fluid par- 
ticles from a point source located in a turbulent channel 
flow. The emphasis is to test the sufficiency of the techniques 
developed, to produce Lagrangian flow information and to 
establish proper parameter values and simulation proce- 
dures. The acquisition of more accurate estimates of the 
Lagrangian characteristics of the flow (by increasing the 
spatial resolution of the simulation as well as the number of 
independent particle trajectories traced) will be the focus of 
a future paper. 

Most of these exploratory results were obtained with 
grid A that has 16 x 33 x 64 = 33792 grid points. The dimen- 
sions of the computational box (A, = 630, 2H = 250, 
%Z = 630) are not adequate to accommodate the larger 
scales of motion as is apparent from Eulerian correlation 
and structure data collected by Lyons [S, 61. Nonetheless, 
and despite the inadequate resolution, Eulerian statistics (at 
least of low order) showed satisfactory agreement with 
experimental data (Lyons [S, 61). Therefore, the coarse 
grid simulation offers an economical way to test the 
tracking algorithm. 

A number of fluid particles, Npr, were tagged 
simultaneously at time t = t, and assigned initial positions 
that spread them over a horizontal xz-plane at a desired dis- 
tance y + from the bottom wall of the channel. The statisti- 
cal homogeneity of the Eulerian fields in the streamwise and 
spanwise directions removes any statistical dependence on 
the x and z coordinates of the source location. Therefore, 
ensemble averaging over particles released at different x and 
z locations is permitted. Similarly, the stationarity of the 
Eulerian fields renders the time of release t, irrelevant, thus 
justifying ensemble averaging over particles released at dif- 
ferent times, too. The number of particles allocated was 
restricted by the number of grid points employed over a 
horizontal plane to resolve the Eulerian fields. The particles 
are released at positions on the order of one grid spacing 
apart. Releasing more particles would not improve the 
statistical sample (except perhaps at very long diffusion 
times) because the motion of the particles would be initially 
strongly correlated. Several tracking experiments were 
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TABLE I 

RMS Velocity Interpolation Errors on the Coarse Grid A for 
LGCH Interpolation 

Y+ % error in V, % error in V, % error in Vz 

1 1.07 12.06 5.75 
2 1.04 9.26 5.68 
5 1.11 8.19 5.45 

15 0.99 8.27 6.17 
125 0.31 8.14 7.49 

performed in each turbulence simulation for computational 
economy. 

The paths of the particles were traced (using the algo- 
rithm of the previous section) and time series of particle 
velocities and positions were generated from which 
Lagrangian statistics were estimated. These statistical 
quantities are expected to be functions of only the normal 
coordinate of the location of the source and the diffusion or 
elapsed time after release. The particle displacement is a 
nonstationary random process, since the spread of the par- 
ticles in the homogeneous directions of the flow continues to 
grow, without limit. (The normal component of the disper- 
sion, however, is limited eventually by the presence of the 
walls and has to approach a constant value corresponding 
to a uniform distribution across the channel cross section.) 
The particle velocity will also be nonstationary initially, due 
to the inhomogeneities of the flow in the normal direction. 
At long times it will become stationary as a result of the 
boundedness of the flow in the inhomogeneous direction. 

(b) E&t of the Interpolation Accuracy 

Velocity interpolation errors were assessed by comparing 
interpolated particle velocities (at the time of their release) 
calculated using the LGCH scheme of Section 3 to exact 
velocities calculated from (1). A large number of particles 
(1024) were randomly released over a horizontal plane at a 
given distance from the bottom wall and the root-mean- 

TABLE II 

RMS Velocity Interpolation Errors on the Fine Grid C for 
LGCH Interpolation 

Y+ % error in V, % error in V, % error in V, 

0.1 0.30 3.75 1.30 

0.5 0.30 3.59 1.24 

1.0 0.29 3.32 1.16 

2.0 0.29 3.02 1.03 
10.0 0.27 2.42 1.15 
15.0 0.27 2.46 1.25 

150.0 0.04 1.35 1.50 

square difference between interpolated and exact velocities 
(normalized by the rms turbulence velocities) was com- 
puted as a measure of the interpolation errors incurred over 
one time step. The largest errors are expected with the low 
resolution simulation A (Table I). Table I shows that the 
largest errors appear in the normal velocity; these increase 
close to the wall, where more kinetic energy resides with the 
small scales of motion. Table II, which presents rms inter- 
polation errors on the tine grid C, shows that the accuracy 
of the interpolation is improved significantly by improving 
the resolution of the simulation. 

Figure 6 shows the trajectories of fluid particles origi- 
nating in the center of the channel which were calculated by 
using the mixed Lagrangian-Chebyshev (LGCH) and fully 
Lagrangian interpolation of degree five (LGI/S). The two 
trajectories deviate only negligibly from each other even 
after a long integration time of 150 units made dimen- 
sionless with wall parameters. The difference in the time step 
size used in the two runs had no effect. (The effect of the time 
step size is examined shortly.) Such tests show that the use 
of the Chebyshev series in the normal direction (LGCH) 
offers only a small improvement over the fully Lagrangian 
interpolation (LGI/S) in the center of the channel. 
However, in the wall region, Lagrange polynomials of 
degree live cannot be used in the normal direction for 
particles closer than two grid points away from the wall. 
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FIG. 6. Trajectories of the same particle in the center of turbulent 
channel flow traced for 150 wall time units using different interpolation 
schemes: LGIj5 (Aft, = 0.4) and LGCH (Aft, = 0.6). 
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Y 

FIG. 7. Trajectories of the same particle released at y + = 2 in the 
coarse grid simulation A and traced for 100 wall time units using spectral 
and LGCH interpolation. 

Y(t-to)=X(xo, t)-xx,= ‘V(x,, t)dt, I (20) 
10 

Errors in particle displacements in the wall region were 
quantified for the LGCH scheme by comparing computed 
trajectories of fluid particles with true trajectories traced 
using the exact spectral interpolation. A large number of 
particles (1024) were released at y + = 2 in the coarse grid 
channel simulation A and their trajectories were traced for 
100 wall time units. Figure 7 shows a comparison of the 
computed and exact trajectory of one of these particles. The 
trajectories are identical initially and they remain 
reasonably close even after a total time of 100 wall units. 
The rms displacement errors in the normal and spanwise 
directions averaged over all particles and normalized by the 
rms displacement at the same time are shown in Fig. 8. 
Again the largest errors are found in the normal direction. 

is used in place of the position vector X(x,, t) in order 
to describe the motion of a single fluid particle. The dis- 
placement fluctuation vector is obtained as Y’(xO, t) = 
Y(%> t) - (Y(%, t)). It is noted that since the largest inter- 
polation errors are incurred in the wall region of the coarse 
grid simulation, Fig. 7, 8, and 9 represent a worst case 
scenario and are indicative of an upper limit on the particle 
displacement errors. 

Trilinear interpolation was found to be significantly less 
accurate than Lagrangian interpolation of order five. 
Lagrangian velocity autocorrelations, computed with either 
LGIj5 or LGCH and with a trilinear interpolation (LNI), 
are compared in Fig. 10. The Lagrangian autocorrelation is 
defined as 

R&(t 
r, 0, 

s)= (V(xo, to). q&h to+S)) 

Vi,rms(tO). Vj,rms(tO + $) ' 
(21) 

I J 

spanwise 
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FIG. 8. Root-mean-square displacement errors normalized with the FIG. 9. 
root-mean-square dispersion at the same time, averaged over 1024 

Mean square dispersion of 1024 particles released at y + = 2 in 

particles released at y + = 2 in the coarse grid simulation A. 
the coarse grid simulation A and traced using spectral or LGCH inter- 
polation. 

The errors do not show a significant accumulation over time 
up to about 50 wall time units. However, after the devia- 
tions between computed and true trajectories become com- 
parable to the smallest turbulence scales of the simulation, 
displacement errors grow rapidly. It should be mentioned at 
this point that the statistical error from averaging over an 
ensemble of only 1024 particles also becomes significant 
after a time of about 80 wall units. 

Lagrangian statistical quantities averaged over many 
particles are less sensitive to interpolation errors than 
individual particle trajectories. In Fig. 9 the computed mean 
square dispersions in the normal and spanwise directions 
are compared to the true mean square dispersions of 
particles traced with the exact spectral interpolation. The 
dispersion tensor is comprised of the second-order moments 
of the displacement fluctuation vector, 

D,,(t- a= (y:(Xo, f). y;(x,, t)>, (19) 

where ( ) indicates averaging over all particles. The 
displacement vector, defined as 
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FIG. 10. Lagrangian velocity autocorrelations in the center of a 
channel using (a) Linear interpolation (LNI) and (b) Lagrangian inter- 
polation of degree 5 (LGI/S). 

The brackets ( ) indicate averaging over the ensemble of 
particles released in the center of the coarse grid channel 
flow simulation A. It should be noted that definition (21) 
accounts for the nonstationarity of the particle velocity. 
Figure 10 suggests that three-dimensional linear interpola- 

The HMCH scheme makes use of cubic polynomials in 
the x and z directions. Asymptotically, the error of the 

tion overestimates the velocity autocorrelation, because the 

approximation decreases as the fourth power of the grid 
spacings. The scheme involves performing the summation in 

LNI scheme misses the decorrelating effect of the small 

(7) for the y-coordinate of each particle and (x, z) values 
corresponding to the four grid points surrounding the par- 

scales of motion. 

ticle. Unlike the LGCH method, the HMCH method makes 
use of the values of the first and second spatial derivatives of 
the velocity at the above four points (see BM). Specifically, 
for each component of velocity, the values of the first 
derivatives with respect to x and z, as well as the second 
derivative with respect to x and z, are needed at the four 
points. Unfortunately, this means that the storage 
requirements for the HMCH scheme are significantly larger 
than for the other methods, since three-dimensional arrays 
are needed to store each of the spatial derivative fields. This 

TABLE III 

RMS Velocity Interpolation Errors on the Small Box, 
High Resolution Grid B for LGCH Interpolation 

Y+ % error in V, % error in V, % error in V, 

0.1 0.80 8.39 4.04 
0.5 0.73 8.38 3.85 
1.0 0.70 7.65 3.75 
2.0 0.65 8.39 3.54 

10.0 0.75 5.65 4.03 
15.0 0.69 6.16 5.14 
50.0 0.48 8.06 6.42 

150.0 0.23 7.66 9.28 

TABLE IV 

RMS Velocity Interpolation Errors on the Small Box, 
High Resolution Grid B for HMCH Interpolation 

Y+ % error in V, % error in V, % error in V, 

0.1 0.17 1.75 0.86 
0.5 0.16 1.76 0.83 
1 0.15 1.62 0.8 1 
2 0.15 1.73 0.76 

10 0.16 1.18 0.82 
15 0.15 1.27 1.04 
50 0.10 1.59 1.25 

125 0.05 1.53 1.80 

large storage requirement is the major drawback of the 
HMCH scheme. On the other hand, BM have provided 
evidence that partial Hermite interpolation can be more 
accurate than sixth-order Lagrange interpolation for 
marginally resolved flows even though partial Hermite 
interpolation is a lower order scheme. For that reason, 
HMCH interpolation is compared with LGCH inter- 
polation. 

The comparison between LGCH and HMCH interpola- 
tion is made on grid B. It should be recalled that grid A 
and grid B differ only in that grid B has 65 grid points in 
the y-direction while grid A has 33 grid points in the 
y-direction. Table III presents the rms errors for LGCH 
interpolation on grid B. By comparing the results in 
Tables I and III, it can be seen that, although the errors on 
grid B are consistently smaller than on grid A, the effect of 
increasing the number of grid points in the y-direction on 
the accuracy of the results is small. 

Table IV presents the rms errors for HMCH interpola- 
tion on grid B. It can be seen that the errors are not only 
smaller than the errors with LGCH interpolation on grids A 
and B but even on grid C, which is not line enough to 
resolve the smallest scales in the flow. These results appear 
to be consistent with BM’s results for homogeneous tur- 
bulence. It is conceivable that, in applications requiring 
high interpolation accuracy on relatively coarse grids, 
HMCH interpolation may be a viable option. It is 
interesting to note that the error in the spanwise velocity 
increases near the middle of the channel with both methods 
(Tables I to IV) for reasons which are not understood. 

(b) Effect of the Time Step Size 

The effect of the size of the time step in computing 
Lagrangian statistics in a channel flow was also tested. The 
work of YP has shown that the Courant numerical stability 
constraint places a limit on the time step size used in the 
solution of the Navier-Stokes equation that is more 
stringent than is required for the integration of the equation 
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of particle motion. In order to examine the effect of time- 
stepping errors, the tracking time step was varied as an 
integer multiple of the time step used in the hydrodynamic 
simulation. Values of At,,= 0.2, 0.4, and 0.6 were tried. 
Accurate interpolation (LGCN) was used in order to mini- 
mize interpolation errors which otherwise could obscure the 
smaller time-stepping errors. A sufficient number of par- 
ticles (N,, = 2024) was traced in order to also minimize 
statistical errors. Lagrangian autocorrelations computed 
according to (2 1) were identical for all three time step values 
up to a total time of 150 wall units. For these values of At,,, 
the typical displacement of a fluid particle in the center of 
the channel in any direction is smaller than the grid spacing 
in the same direction. It is concluded that a value of 
Attr = 0.2 guarantees negligible time-stepping errors. 

(c) Effect of the Ensemble Size 

A final source of error in the computed Lagrangian 
statistics results from averaging over an insufficient 
stochastic ensemble. The statistical error can be detected by 
monitoring statistical convergence and can be removed by 
increasing the sample size. The longer the particles are 
followed and allowed to spread, the larger is the number of 
particles that is required for good statistics. It was deter- 
mined that averaging over at least about 4000 particles 
is necessary for meaningful first- and second-order 
Lagrangian statistics up to a diffusion time of 150 wall units. 

It should be noted that for unbiased statistics averaging 
not only over an ensemble of independent particle trajec- 
tories, but also over an ensemble of independent turbulence 
realizations, is required in order for the effect of any 
peculiarities of the turbulence at the time of the release of 
the particles to be smeared out. Therefore, a tracking experi- 
ment should be repeated by releasing new sets of particles at 
later times. Averages should then be obtained for each time 
of release. The time between releases should be sufficiently 
long (on the order of one turbulence period T + = 100 or 
more) for the flow to evolve sufficiently to prevent any of the 
structural details of the turbulence at the time of the first 
release from being preserved. The statistical dependence on 
the time of release diminishes by extending the horizontal 
dimensions of the computational box since, according to the 
ergodic hypothesis, spatial and time averages of a stationary 
homogeneous turbulence are identical. 

(d) Comparisons with the 7Xeory of Homogeneous 
Turbulence Diffusion 

Although channel flow is inhomogeneous in the normal 
direction, Taylor’s theory [13] is still approximately 
applicable for small to moderate diffusion times, when most 
of the diffusing particles remain in the nearly homogeneous 
part of the flow in the center of the channel. As the cloud 

of contaminated particles is convected downstream, it 
spreads around its center of gravity. The average linear 
cloud dimension at any time instant t can be estimated 
from the diagonal components of the dispersion as 
[Dll(t) . &z(t) . &dt)1(“3). 

In the early stages of the diffusion process the dispersion 
varies parabolically with time: 

Dii”qt2, (22) 

where 3 is the turbulence intensity of the ith velocity 
component. In homogeneous turbulence and at sufficiently 
long times, the dispersion exhibits a linear growth with the 
time 

Dii(t-tto)%2&+(t-t,), (23) 

where 

s 00 tf;= Rf; (~1 ds 
0 

(24) 

is a Lagrangian integral time scale. Figure 11 presents the 
computed mean square particle dispersion on a logarithmic 
graph. Lines of slopes 1 and 2 are drawn on the graph for 
easy comparison with Eqs. (22) and (23). It is clear that the 
behavior observed at small times (up to a value of about 20 
wall units) agrees with Eq. (23). The curve for the 
streamwise dispersion, D,, , is located above those for 
dispersion in the transverse directions, D,, and D,,, in 
agreement (both qualitative and quantitative) with the 
corresponding Eulerian intensity values at the centerline. At 
longer times the dispersion in the flow direction does not 
approach a constant asymptote. The dispersion is larger 
than the predictions of Eq. (23) for a homogeneous field 
because particles at different y-locations are, on average, 
experiencing differences in streamwise velocity because of 
the changes in mean velocity. This enhanced longitudinal 
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FIG. 11. Asymptotic behavior of the computed mean square particle 
dispersion in the center of the channel. 
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dispersion was first described by Taylor in a series of papers 
[ 14-161 which considered only the long-time behavior. In 
the normal direction the flow is bounded and the walls even- 
tually limit the movement of the particles so that the disper- 
sion in this direction has an upper limit determined by H. 
This is evident in Fig. 11 which shows D,, at long times to 
increase with time at a slower rate than the linear relation 
predicted by (23). On the other hand, dispersion in the . 
unbounded z-directton, D,,, does show a linear increase 
with time at large times. 

5. DISCUSSION 

Of the interpolation schemes considered in this paper, 
HMCH interpolation is the most accurate for turbulent 
flow simulations with presently obtainable spatial resolu- 
tion. Furthermore, this conclusion seems likely to remain 
true since, as computers increase in speed and memory, 
future researchers will exploit these changes by increasing 
the flow Reynolds number. For the purpose of tracking 
point particles, LNI is the only interpolation scheme that 
introduces serious errors for marginal resolution. However, 
when tracking solid particles, the drag force acting on the 
particle depends on the difference between the particle 
velocity and the undisturbed fluid velocity evaluated at the 
center of the particle and interpolation errors may be more 
serious in this case 

One of the more important findings of this research is 
that the asymptotic error estimates are misleading when 
interpolation schemes are applied to currently feasible 
channel flow simulations. The probable explanation is that 
the flows are only marginally resolved so that significant 
energy resides in the smallest length scales included in the 
simulation. 

When exact interpolation is used to compute the fluid 
velocity, the cpu time needed for the interpolation can be an 
order of magnitude more than the amount of cpu time 
needed for all of the rest of the calculations together. By 
comparison, when LGCH interpolation was used with 
80,645 particles on grid C, the particle tracking calculations 
required only about 41% of the total cpu time on a Cray-2 
computer; such a calculation would be prohibitively expen- 
sive with exact interpolation. The same calculation with 
HMCH interpolation would require only slightly more 
CPU time although the memory requirements might prove 
unacceptable. 

When both accuracy and storage are important con- 
siderations, LGCH interpolation appears to be a good 
choice. However, there are certainly other schemes that 
would perform about as well. For example, if the CSI 
scheme of YP were modified to include Chebyshev summa- 
tion for the y-direction, it would probably perform about as 
well as LGCH for marginally resolved channel flows. Our 
primary goal has been simply to point out the accuracy that 
is obtainable with relatively simple, inexpensive interpola- 
tion schemes for current channel flow simulations. 
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